

General Certificate of Education Advanced Level Examination
January 2011

Mathematics

MFP2

Unit Further Pure 2

Wednesday 19 January $2011 \quad 1.30$ pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 (a) Sketch on an Argand diagram the locus of points satisfying the equation

$$
|z-4+3 \mathrm{i}|=5
$$

(b) (i) Indicate on your diagram the point P representing z_{1}, where both

$$
\left|z_{1}-4+3 \mathrm{i}\right|=5 \quad \text { and } \quad \arg z_{1}=0
$$

(ii) Find the value of $\left|z_{1}\right|$.

2 (a) Given that

$$
u_{r}=\frac{1}{6} r(r+1)(4 r+11)
$$

show that

$$
\begin{equation*}
u_{r}-u_{r-1}=r(2 r+3) \tag{3marks}
\end{equation*}
$$

(b) Hence find the sum of the first hundred terms of the series

$$
\begin{equation*}
1 \times 5+2 \times 7+3 \times 9+\ldots+r(2 r+3)+\ldots \tag{3marks}
\end{equation*}
$$

3 (a) Show that $(1+i)^{3}=2 i-2$.
(b) The cubic equation

$$
z^{3}-(5+\mathrm{i}) z^{2}+(9+4 \mathrm{i}) z+k(1+\mathrm{i})=0
$$

where k is a real constant, has roots α, β and γ.
It is given that $\alpha=1+\mathrm{i}$.
(i) Find the value of k.
(ii) Show that $\beta+\gamma=4$.
(iii) Find the values of β and γ.

4 (a) Prove that the curve

$$
y=12 \cosh x-8 \sinh x-x
$$

has exactly one stationary point.
(b) Given that the coordinates of this stationary point are (a, b), show that $a+b=9$.
(4 marks)

5 (a) Given that $u=\sqrt{1-x^{2}}$, find $\frac{\mathrm{d} u}{\mathrm{~d} x}$.
(2 marks)
(b) Use integration by parts to show that

$$
\int_{0}^{\frac{\sqrt{3}}{2}} \sin ^{-1} x \mathrm{~d} x=a \sqrt{3} \pi+b
$$

where a and b are rational numbers.

6 (a) Given that

$$
x=\ln (\sec t+\tan t)-\sin t
$$

show that

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin t \tan t
$$

(4 marks)
(b) A curve is given parametrically by the equations

$$
x=\ln (\sec t+\tan t)-\sin t, \quad y=\cos t
$$

The length of the arc of the curve between the points where $t=0$ and $t=\frac{\pi}{3}$ is denoted by s.

Show that $s=\ln p$, where p is an integer.

7 (a) Given that

$$
\mathrm{f}(k)=12^{k}+2 \times 5^{k-1}
$$

show that

$$
\mathrm{f}(k+1)-5 \mathrm{f}(k)=a \times 12^{k}
$$

where a is an integer.
(b) Prove by induction that $12^{n}+2 \times 5^{n-1}$ is divisible by 7 for all integers $n \geqslant 1$.
(4 marks)

8 (a) Express in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$:
(i) $4(1+\mathrm{i} \sqrt{3})$;
(ii) $4(1-\mathrm{i} \sqrt{3})$.
(b) The complex number z satisfies the equation

$$
\left(z^{3}-4\right)^{2}=-48
$$

Show that $z^{3}=4 \pm 4 \sqrt{3} \mathrm{i}$.
(c) (i) Solve the equation

$$
\left(z^{3}-4\right)^{2}=-48
$$

giving your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(ii) Illustrate the roots on an Argand diagram.
(d) (i) Explain why the sum of the roots of the equation

$$
\left(z^{3}-4\right)^{2}=-48
$$

is zero.
(ii) Deduce that $\cos \frac{\pi}{9}+\cos \frac{3 \pi}{9}+\cos \frac{5 \pi}{9}+\cos \frac{7 \pi}{9}=\frac{1}{2}$.

